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.CONSTRUCTING CONFIDENCE INTERVALS USING THE BOOTSTRAP:
AN APPLICATION TO A MULTI-PRODUCT COST FUNCTION

B. Kelly Eakin, Daniel P. McMillen, and Mark J. Buono*

Abstract—A multi-product cost function system is estimated
for 387 banks in states that allow branch banking. The boot-
strap resampling method is used to construct confidence inter-
vals for marginal costs, output-cost elasticities, economies of
scale and scope, and Allen elasticities of substitution. Confi-
dence intervals for these measures are usually constructed
using a first-order variance approximation under a normality
assumption, but such confidence intervals are inexact if the
measures are not normally distributed or the variance approx-
imations are imprecise. We find that the bootstrap standard
error estimates can differ significantly from the usual esti-
mates. Furthermore, we use the bootstrap to expand the
analysis of cost function regularity properties.

I. Introduction

Often researchers are interested in statistics that are
nonlinear combinations of an empirical model’s esti-
mated parameters, which are generally assumed to be
normally distributed. For a cost function these mea-
sures include marginal cost or scale economies, partial
elasticities of substitution, and, in the multiple output
case, measures of scope economies. Nonlinearity makes
standard confidence intervals unreliable because a non-
linear function of normally distributed parameter esti-
mates will not necessarily follow a normal or other
convenient distribution. Thus, the usefulness of tradi-
tional standard error estimates is questionable. Also,
regularity conditions, which cannot easily be imposed
(such as concavity of a cost function), are typically
verified at the means of the data or possibly at each
data point. However, formal tests that the conditions
truly hold are currently unavailable.

Confidence intervals for measures that are functions
of parameter estimates can be easily constructed using
a bootstrap resampling technique. Perhaps more im-
portantly, bootstrap resampling also allows one to as-
sign a statement of confidence to the conclusion that
regularity conditions are satisfied. In this paper, we
construct alternative empirical confidence intervals for
commonly used cost function measures, and compare
them to intervals calculated using approximate stan-
dard errors. Bootstrap resampling also allows us to
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state that regularity conditions are likely satisfied in
this model.

Bootstrap resampling provides an empirical substi-
tute for the often impossible alternative of deriving the
theoretical distribution of a complex statistic. The
bootstrap has a relatively high start-up cost because of
the Monte Carlo type estimations. However, because
the tedium of constructing gradient vectors is avoided,
there is a very low incremental cost as the number of
statistics for which confidence intervals are desired
increases. Consequently, if the number of statistics is
great enough, bootstrap resampling is a low cost substi-
tute for the traditional confidence interval even if the
underlying distributions are known.

We present four alternative methods of constructing
confidence intervals and compare these alternatives to
the traditional approach. Our findings are valid only
for the data set we use and one should be cautious in
attempting to generalize. However, in this paper we do
make three generalizations. First, bootstrap resampling
is useful in evaluating the validity of ¢-statistics for
testing hypotheses about nonlinear combinations of
parameter estimates. Second, in many cases bootstrap
resampling provides a low cost method of obtaining
confidence intervals. Third, bootstrap resampling al-
lows the researcher to make statements of confidence
about properties such as regularity which heretofore
have been extremely difficult to verify statistically.

II. Bootstrap Confidence Intervals

Bootstrap methods are well-suited to constructing
standard error estimates and confidence intervals when
the sample size is small or the distribution of the
statistic is unknown. Although sample size is not a
problem for our data set, it is a common problem in
studies that employ “flexible form” functions, such as
the translog function, because of the many parameters
estimated. The distribution can be a problem because
many statistics calculated from an estimated cost func-
tion are nonlinear functions of variables that are com-
monly assumed to be normally distributed.

First-order approximations to the standard errors
can be calculated using an approximate variance for-
mula (Kmenta, 1986, pp. 486—487). These estimates
may be imprecise if higher-order terms in the Taylor
expansion are important. Also, the usefulness of accu-
rate standard error estimates is unclear if the underly-
ing distributions are unknown. Often authors assume
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normal distributions, but there is, in general, no reason
to expect complex statistics to follow a normal distribu-
tion. Furthermore, there is evidence that this is incor-
rect for Allen elasticities of substitution (Anderson and
Thursby, 1986). Constructing confidence intervals for
such measures is precisely the sort of problem for
which bootstrap methods are appropriate.

Using a Monte Carlo algorithm, we estimate the
model B times. We first estimate our model of m
equations using all n data points. We call these results
our base model estimates, and let v denote an estimate
of V, the statistic of interest. We keep the n X m
matrix of errors from the base model estimation and
the predicted values of the dependent variables. We
then randomly draw with replacement n times from
the rows of the error matrix, form a new n X m error
matrix, and construct new dependent variables by
adding the new error matrix to the n X m matrix of
predicted values. The probability that the new matrix
of dependent variables is identical to the original one
is n™".

We re-estimate the model B times, using B different
dependent variable matrices. This yields B estimates of
V, denoted v*(b) where b = 1,..., B. The bootstrap
estimate of the standard error (sg) is the standard
deviation of v*(b), the bootstrap estimates. That is, sy
is the square root of Lf_,[v*(b) — v*()P/(B — 1),
where v*() = X8_ 0v*(b)/B. As B increases, s ap-
proaches the population bootstrap standard error'. In
practice, B = 100 appears adequate for estimates of
sg, whereas B = 1000 is appropriate for estimates of
confidence intervals (Efron and Tibshirani, 1986, and
Efron, 1987).

The basic bootstrap confidence interval is ¢ (a) = v
+ s5z* where z(¥ is the 100« percentile point of a
standard normal distribution. Construction of this con-
fidence interval is identical to the construction of tradi-
tional confidence intervals except that the approximate
standard error is replaced by the bootstrap estimate of
the standard error. This confidence interval is correct if
v is distributed normally with constant variance. More
general confidence intervals are presented in Efron
and Tibshirani. The simplest of these is the percentile
method, which is constructed by ordering v* and choos-
ing critical value observations as the endpoints of the
confidence intervals. (For example, if B = 1000, obser-
vations 26 and 975 are the endpoints of the 95%
confidence interval.) This interval, denoted Cp» 18 ap-
propriate if there exists a monotone transformation of

" The bootstrap standard error is o(F) where F is the
empirical probability distribution with probability mass 1/n
on Xy, X,...,X, As B approaches infinity, the standard
error estimate, sg, will approach o (F) (Efron and Tibshirani,
1986, pp. 54-56).
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v such that the transformation 1s normally distributed
with constant variance.

If the distribution is symmetric, but the estimate of
V' is biased, then the percentile method is inaccurate.
Instead, the bias-corrected confidence interval, cpc, is
appropriate. To construct cp define G(v) as the per-
centage of v*(b) that are less than v, and let z, =

®~YG(v))}, where ™! is the inverse function of the
standard normal distribution function. For a 95% con-
fidence interval, ¢z is constructed by choosing the
values of v*(b) that are in the 1000{2z, + 1.96} per-
centiles. If G(v) = 0.5, then z, = 0 and cp- collapses
to ¢,. If G(v) is less (greater) than 0.5, then z, is less
(greater) than 0 and the confidence interval will be
shifted, relative to c,, so that both the upper and lower
limits are smaller (larger) than before.

The most general confidence interval we consider is
the bias-corrected percentile, denoted BC,. This method
corrects for both bias and skewness. A skewness mea-
sure suggested by Efron and Tibshirani is a =
A/60(Z,U»/(,U*3?} where U, = (n — 1(v() —
v(i)), n is the number of observations in the original
model, v(i) is the jackknife estimate of V' with the ith
observation deleted, and v(.) = XF_,v(i)/n. For a 95%
confidence interval, BC, is constructed by choosing the
values of »*(b) that are in the 100®{z, + (z, +
1.96) /(1 — a(z, + 1.96))} percentiles. If a = 0, BC, is
equivalent to cg.

III. The Current Application

The cost function is implicitly derived via assump-
tions about technology, firm behavior and input market
structures. The multi-product technology, given by
T(X,Y), is assumed to be increasing in inputs (X),
decreasing in outputs (Y), and continuous. We also
assume that the firm minimizes cost and that input
markets are competitive. Cost, then, is a function of
outputs and input prices and inherits several properties
which we call regularity conditions. These regularity
conditions are the theoretical link that allows us to
infer technological information from cost data.

We apply the bootstrap resampling method to esti-
mate a multi-product cost function for a 1985 cross-
section of 387 banks located in states that allow branch
banking.? We model the bank as producing three out-
puts (loans, investments, and transaction deposits) us-
ing three inputs (purchased funds, labor, and capital).

2We use the Federal Reserve System’s Functional Cost
Analysis survey. A data appendix including variable defini-
tions and measurement as well as descriptive statistics is
available from the authors.
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The foundation of our empirical model is the hybrid
translog cost function

Ln(Cost)
=ay+ LY, + SE)T0a, VY,

hay)
+ 3B InW, + ST, In W, InW,
+ LTip Y InW, + 8,N + 178, Y,N
+ £}8,, InW,N + .55,,N? (1)

where the outputs, Y,, Y, and Yj, are loans, invest-
ments and transaction deposits; W,, W,, and W; are
the prices of the three inputs (purchased funds, labor
and capital); and N is the number of branch offices.
Shephard’s lemma yields the factor share equations

M, =B, + ZiBi, InW, + Lp,Y, + 8, N

fork =1,2,3. (2)

Our hybrid translog cost function is a special case of
the generalized translog multi-product cost function
developed by Caves, Christensen and Tretheway (1980).
Both the hybrid translog and the translog are second-
order approximations to the cost dual of T around
input prices (W) and outputs (Y). The translog uses
the logs of Y and W as the point of approximation
while the hybrid translog uses the logs of W and levels
of Y. They are equally flexible in that no restrictions
are imposed on first- and second-order derivatives,
which allows scale and substitution measures (the shape
of T) to vary as inputs and outputs change. The hybrid
translog is preferred in the multiple output case be-
cause using levels of Y allows scope economies to be
evaluated, while the translog function implies zero cost
if any of the outputs is not produced.

Cost minimization implies that the cost function is
linearly homogeneous with respect to input prices while
Young’s theorem implies symmetric second cross-par-
tial derivatives. These conditions are easily imposed
restrictions.> Other regularity conditions, such as
monotonicity, concavity and non-negative marginal
costs, cannot be imposed without a great loss in func-
tional form flexibility. Instead, these conditions are
checked at each data point.

Cost function measures describing the underlying
technology are marginal costs (MC), output-cost elas-
ticities (SC), overall economies of scale (SCE),
economies of scope (SCOPE), and the Allen partial
elasticities of input substitution (AES). These mea-

3 Homogeneity restrictions are 38, = 1, 3B, = Lo Brn
=0 for all k, n, T}p,, = 0 for all i, and £33, = 0. B3, B3,
Bas» Bizs P13 Pa3s P33 and 8,5 are not estimated and not
reported in table 1. Symmetry restrictions are «;, = &, for all
i, j, and By, = By for all k, n.
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sures are
MC, = 9C/3Y; = Cd In C /3Y,
= C{a; + Z2a,Y; + Tip, In W, + 8,N} (3)
SC,=9InC/3InY, = Y,dInC/dY,
=Y{e, + oY, + Tipi InW, + 8,N}  (4)
SCE = T35C; (5)

SCOPE = [(£}C(Y,,0,;W)) — C(Y,W)] /C(Y, W)
(6)

AESu = (CCH)/(CICI)
= (Bii + Ml(Ml - 1))/(MIMI) (7)
AES,, = (CC,;)/(C,C)) =1+B,,/(MM,), (8)

where C is the cost function, C; =dC/W,, C, =
dC/oW,, C;; = 8*C/oW,0W; and M, and M; are the
expressions for the factor cost shares given by equation
(2). We report traditional standard error estimates for
these measures. Elsewhere we have implicitly assumed
normality in making confidence statements (Buono and
Eakin, 1990). We now use bootstrap resampling to
check the validity of traditional confidence intervals.

IV. Empirical Results

We estimate the base model given by (1) and (2) by
the method of iterative seemingly unrelated regressions
(ITSUR).* We then use our base model results to
re-estimate the model, via ITSUR, 1000 times using
the bootstrap algorithm described in section II. The
base model parameter estimates and their estimated
standard errors are presented in table 1 along with the
means and standard deviations of the bootstrap esti-
mates of parameters. Very similar values are observed
for the base model and bootstrap estimates.

We now present confidence intervals for the mea-
sures given by equations (3) to (8), using the estimated
standard errors and the four alternative bootstrap
methods. Table 2 reports, for each measure, the point
estimate calculated from the base model, the tradi-
tional estimate of the standard error (s;) calculated via
the approximate variance formula, and information
from the bootstrap estimates that is needed to con-
struct the alternative confidence intervals. Comparing
the traditional and bootstrap standard error estimates,
we observe similar values for the marginal costs (MC;s),
output-cost elasticities (SC,s), and overall economies of
scale (SCE). For the scope measure and the AES
measures the standard error estimates are considerably
different. The large differences in the AES standard
error estimates likely reflect imprecision in the first-
order variance approximation. Interestingly, the prob-

4 Additive errors, which may be correlated across equations
but not across observations, are assumed.
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TABLE 1.—PARAMETER ESTIMATES OBTAINED ViA TRADITIONAL SYSTEM ESTIMATION
AND FROM 1000 BOOTSTRAP SYSTEM REGRESSIONS

Traditional ITSUR

Bootstrap ITSUR (B = 1000)

Estimate Std. Error Mean Std. Dev.
a0 —1.454 0.034 —1.450 0.036
al 0.522 0.048 0.523 0.050
a2 0.353 0.057 0.355 0.058
a3 0.163 0.046 0.164 0.049
all —-0.027 0.012 -0.027 0.012
al2 0.0001 0.014 0.0004 0.015
al3 —0.040 0.013 —-0.040 0.014
a2 -0.027 0.024 —0.027 0.025
@23 —0.040 0.016 —0.040 0.016
a33 0.045 0.027 0.044 0.028
B1 0.745 0.005 0.746 0.005
B2 0.193 0.003 0.192 0.003
B11 0.145 0.017 0.144 0.017
B12 —-0.121 0.013 -0.121 0.013
B22 0.110 0.011 0.109 0.012
pll 0.025 0.004 0.025 0.004
p12 —0.020 0.003 —0.021 0.003
p21 0.011 0.004 0.011 0.004
p22 —0.008 0.003 —0.008 0.003
p31 -0.020 0.004 —-0.020 0.003
p32 0.014 0.003 0.014 0.002
ON 0.038 0.007 0.037 0.008
SNN -0.001 0.0003 —-0.001 0.0003
8Y1 —0.002 0.002 —0.002 0.002
8Y2 0.001 0.003 0.001 0.003
8Y3 —-0.001 0.002 —0.001 0.002
oW1 -0.002 0.0005 -0.002 0.0005
W2 0.001 0.0004 0.001 0.0004
TABLE 2.—ESTIMATED MARGINAL CosTs (MC), Output CosT ELasTICITIES (SC),
Economies oF ScaLE (SCE), ScorE ECONOMIES AND
ALLEN PARTIAL ELASTICITIES OF INPUT SUBSTITUTION (AES)
v¥(B) <v
v St Sp (%) a
MC1 0.049 0.005 0.005 45.4 -0.072
MC2 0.063 0.010 0.010 49.1 -0.097
MC3 0.052 0.018 0.020 46.6 —-0.073
SC1 0.438 0.040 0.041 48.4 —0.056
SC2 0.299 0.047 0.048 49.9 —-0.093
SC3 0.119 0.041 0.044 47.4 —0.063
SCE 0.856 0.052 0.057 48.2 —-0.092
SCOPE 0.659 0.067 0.074 51.3 0.074
AES11 —0.081 0.092 0.031 51.0 —0.004
AES?22 —-1.220 0.115 0.316 51.8 0.011
AES33 —11.790 0.332 0.629 50.4 0.003
AES12 0.154 0.030 0.094 49.5 —0.002
AES13 0.491 0.307 0.115 48.9 0.006
AES?23 1.923 0.641 0.336 51.5 —0.004
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TABLE 3.— CONFIDENCE INTERVALS: TRADITIONAL, BOOTSTRAP STANDARD DEVIATION, PERCENTILE, B1as-CORRECTED,
AND B1as-CORRECTED PERCENTILE

Bootstrap Bias-Corrected
Traditional Std. Dev. Percentile Bias-Corrected Percentile
95% Confidence Intervals
MC1 0.040 0.058 0.039 0.059 0.039 0.059 0.038 0.058 0.036 0.057
MC?2 0.044 0.083 0.043 0.084 0.043 0.084 0.042 0.083 0.039 0.080
MC3 0.016 0.087 0.014 0.090 0.014 0.091 0.009 0.087  —0.001 0.083
SC1 0.359 0.517 0.357 0.519 0.350 0.516 0.346 0.512 0.339 0.506
SC2 0.208 0.391 0.205 0.39%4 0.210 0.396 0.201 0.396 0.182 0.379
SC3 0.038 0.200 0.032 0.205 0.031 0.206 0.020 0.200 0.003 0.188
SCE 0.754 0.958 0.745 0.967 0.745 0.965 0.739 0.962 0.699 0.945
SCOPE 0.528 0.791 0.515 0.803 0.523 0.807 0.526 0.820 0.542 0.848
AES11 —0.261 0.099 -0.141 —0.021 —0.146 —0.024 —0.143 -0.023 —0.143 —0.023
AES22 —-1.446 —0.99%4 —1.840 —0.600 —1.870 —0.648 —1.835 —0.615 —1.823 —-0.593
AES33 ~12.440 —11.140 —13.020 —10550 —13.040 -—10.530 —13.040 —10.530 -—13.030 —10.530
AES12 0.095 0.214  —0.030 0.339 -0.017 0.353 —0.018 0.349 —0.020 0.348
AES13 -0.112 1.094 0.266 0.716 0.263 0.717 0.260 0.711 0.260 0.714
AES23 0.667 3.179 1.264 2.581 1.270 2.558 1.288 2.575 1.279 2.561
90% Confidence Intervals
MC1 0.041 0.057 0.041 0.057 0.041 0.057 0.039 0.056 0.038 0.056
MC2 0.047 0.080 0.046 0.080 0.046 0.080 0.046 0.080 0.042 0.078
MC3 0.022 0.082 0.020 0.084 0.021 0.084 0.016 0.081 0.009 0.077
SC1 0.372 0.504 0.370 0.506 0.369 0.503 0.366 0.501 0.356 0.496
SC2 0.223 0.376 0.220 0.378 0.220 0.378 0.218 0.378 0.202 0.367
SC3 0.051 0.187 0.046 0.191 0.049 0.189 0.039 0.186 0.031 0.180
SCE 0.770 0.942 0.763 0.949 0.766 0.950 0.761 0.944 0.739 0.936
SCOPE 0.549 0.770 0.538 0.780 0.542 0.781 0.551 0.788 0.558 0.807
AES11 -0.232 0.070 -0.132 —0.030 -0.133 —0.032 -0.132 -0.030 -0.132  -0.030
AES22 -1.410 -1.030 —1.740 —0.699 —1.765 -0732 -1.731 —0.706 —-1.728 —0.688
AES33 ~12330 —11.240 —12.820 —10.750 —12.850 —10.770 —12.830 —10.760 —12.820 —10.760
AES12 0.104 0.204 0.000 0.309 0.006 0.309 0.005 0.305 0.005 0.305
AES13 -0.015 0.997 0.302 0.680 0.298 0.677 0.292 0.674 0.295 0.675
AES23 0.869 2.977 1.370 2.476 1.362 2.475 1.375 2.493 1.374 2.489

lem of bias does not affect the input measures (the
AES’s) differently from the output measures, while
skewness is more of a problem for the output measures
than for the input measures.

Table 3 gives the 95% and 90% confidence intervals
using the five alternatives. Most of the changes from
the traditional confidence intervals come from using
the bootstrap standard deviation as an estimate of the
standard error. For the output measures, small differ-
ences between the traditional and bootstrap standard
error estimates result in similar confidence intervals.
For the AESs large differences between the traditional
and bootstrap standard error estimates cause corre-
sponding differences in the confidence intervals. Simi-
larity of the other four alternative bootstrap confidence
intervals is evidence that bias and skewness are unim-
portant in our application.

The bootstrap alternatives resolve two ambiguities
that exist if the traditional confidence intervals are
used. Looking at the traditional confidence intervals,
we cannot conclude that AES;; is negative or that
AES,; is positive, even at the 10% significance level.

TABLE 4.—PERCENTAGES OF BOOTSTRAP
PARAMETER SETS THAT SATISFY CONCAVITY
AND ALL REGULARITY CONDITIONS AT THE MEANS
OF THE SAMPLE DATA As THE NUMBER
oF BooTsTRAP RUNs (B) INCREASES

B=100 B=250 B =500 B=1000

Concavity 100% 98.9% 98.8% 98.9%
All Regularity
Conditions 99% 98.4% 98.4% 98.2%

Negativity of AES,, is a regularity condition implied
by cost minimization. All the bootstrap confidence
intervals resolve this ambiguity at the 5% significance
level. On the other hand, the bootstrap alternatives
introduce another ambiguity at the 5% level on the
sign of MC,, which is another regularity condition.

Our empirical results indicate that bootstrap resam-
pling provides an alternative to traditional analysis and
that this alternative yields different confidence inter-
vals. Another benefit is to expand the scope of analysis.
We do this by using the bootstrap results to establish
some statistical confidence in our analysis of the cost
function’s regularity.
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Some regularity conditions, such as symmetry and
homogeneity in input prices, can be easily imposed.
Others, however, cannot be parsimoniously imposed,
and instead must be verified. Many researchers do not
report on regularity. Those who do often consider only
the means of the data. Even when regularity is evalu-
ated at every data point, it is rare that any statistical
significance is assigned to satisfaction of regularity.
Statistical tests of significance are possible for marginal
costs and input demands, but statistical tests for con-
cavity are very difficult or impossible to calculate using
traditional analysis. Furthermore, regularity requires
the simultaneous satisfaction of these conditions, so
testing them individually is questionable.

Bootstrap resampling allows us to make a statement
of the statistical significance of regularity at all data
points and at any point outside the sample. This extra
information is particularly useful if policy is based on
function estimates evaluated away from the point of
approximation—for example, evaluating scope
economies. In table 4, we report the frequency with
which concavity and the set of all regularity conditions
are satisfied when the bootstrap estimates are used.
We expect this percentage to converge as the number
of bootstrap estimates (B) increases. We can say, con-
servatively, that we are confident at the 5% significance
level that the true cost function satisfies all regularity
conditions at the means of our data. This indicates our
estimated base model cost function is well behaved,
allowing us to infer information about technology from
our estimates.

V. Conclusions

Benefits of bootstrap resampling are to establish
statistical confidence in the analysis of cost function
regularity and to increase the accuracy of confidence
intervals. The latter results from improving the stan-
dard error estimates and allowing for non-normality by
adjusting for bias and skewness. In our application,
improving the standard error estimate is the major
gain. Improvement is greatest for the relatively com-
plex measures of AES’s and SCOPE. This finding
suggests that the first-order variance approximations
may be inaccurate for complex statistics. Phillips and
Park (1988) raise essentially the same point in the
context of a Wald statistic and argue the need for
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higher order terms to be obtained by Edgeworth ex-
pansions; however, the bootstrap resampling technique
is an easier remedy.

Another benefit of bootstrap resampling is avoiding
the derivation of gradient vectors used in the approxi-
mate variance formula. This effort is greater when the
number of parameters in the model is large (as is
typically the case with “flexible forms”), and when the
statistics of interest are relatively complex combina-
tions of the model’s parameters.

Bootstrap resampling substitutes computing re-
sources for some labor. The effort required to estimate
the base model is not a net cost because the base
model must be estimated for both the bootstrap and
traditional approaches. The only additional labor in-
volved is writing the Monte Carlo estimation program.
Computing costs of bootstrap resampling are higher
than for the traditional method. However, once the
bootstrap estimates are obtained, the cost of increasing
the number of statistics of interest is near zero. Thus,
one should be more likely to use bootstrap resampling
as (1) there are suspicions of non-normality of the
statistics of interest, (2) it is believed that the tradi-
tional first-order variance approximations are impre-
cise, (3) the number of estimated parameters increases,
(4) the number of statistics of interest increases, and
(5) the opportunity cost of own-time relative to com-
puting increases.
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